PROPOSAL FOR PRELIMINARY EXPLORATION FOR BAUXITE, TITANIUM AND ASSOCIATED MINERALS

(G-3 STAGE)

ANVRA PAT BLOCK

NMET FUNDED PROJECT

DISTRICT- LOHARDAGA, JHARKHAND

By

MINERAL EXPLORATION AND COSULTANCY LIMITED DR. BABASAHAB AMBEDKAR BHAWAN SEMINARY HILLS NAGPUR

Summary of the Block for Preliminary Exploration (G-3) GENERAL INFORMATION ABOUT THE BLOCK

	Features	Details	
	Block ID	Anvra Pat Block (0.55 sq km)	
	Exploration	Mineral Exploration & Consultancy Limited (MECL)	
	Agency		
	Commodity	Bauxite, Titanium & Associated Minerals	
	Mineral Belt	Chhattisgarh-Jharkhand belt (Chhota Nagpur Granite Gneiss)	
	Completion period with entire Time schedule to complete the project	08 Months (240 working days actively)	
	Objectives	The present exploration program at G3 stage has been formulated to fulfil the following objectives:	
		i) Preparation of Geological map and topographical survey at 1:2,000 Scale.	
		ii) To prove the Bauxite occurrence up to a vertical depth of 30m	
		below ground level.	
		iii) Two boreholes will be drilled up to the basement or 50m depth (whichever is earlier).	
		iv) To assess the quality and the thickness of Bauxite horizons in order to estimate the Bauxite resources at G-3 (333) level in the block as per UNFC norms.	
		 v) Along with Bauxite, resources of Titanium and Associated Minerals will be also reported if encouraging values are encountered. 	
		iv) To carry out exploration as per Minerals (Evidence of Mineral Contents) Rules, 2015, Mineral Auction Rule . 2015 and MMDR Act . 2015 as to facilitate the Government of Jharkhand for auctioning of the Bauxite Block.	
	Whether the work will be carried out by the proposed agency or through outsourcing and details thereof. Components to be outsourced and name of the outsource agency	Work will be carried out by MECL.	
	Name/Number of Geoscientists	Two nos. Geoscientist (Field + HQ)	
	Expected Field days (Geology, surveyor)	Geologist Party days:180 days	
		Surveyor Party days: 60 days	
1.	Location	The Anvra Pat Block area falls in Survey of India Toposheet No. 73A/10 and	
		covers total area of 0.55sq.km. The block area falls in and around the villages	

Latitude and Longitude

Corner cardinal points of Anvra Pat G3 Block (0.55 sq.km)

	(WGS-84, Deg	gree Decimal)	(UTM, 2	one-45Q)
Cordinal Point	Latitude	Longitude	Easting	Northing
A1	23.55960668	84.58121399	253102.5	2607554.1
A2	23.56053809	84.58256320	253242.0	2607655.0
A3	23.56242716	84.58293864	253283.9	2607863.6
A4	23.56340619	84.58355855	253349.0	2607971.0
A5	23.56394494	84.58396910	253391.9	2608030.0
A6	23.56495091	84.58433493	253431.2	2608140.8
A7	23.56516186	84.58552162	253552.7	2608162.1
A8	23.56450236	84.58671145	253673.0	2608087.0
A9	23.56360326	84.58560028	253557.9	2607989.3
A10	23.56223400	84.58422633	253479.0	2607857.0
A11	23.56162130	84.58401971	253411	2607766
A12	23.56043077	84.58378927	253385.0	2607645.0
A13	23.56006602	84.58297335	253283.0	2607602.0
A14	23.55954292	84.58294101	253278.7	2607544.1
A15	23.55905501	84.58413760	253400.0	2607488.0
A16	23.55906655	84.58508158	253496.4	2607487.7
A17	23.55955369	84.58519834	253509.3	2607541.4
A18	23.55939879	84.58564708	253554.8	2607523.5
A19	23.56072226	84.58524394	253495	2607707
A20	23.56003643	84.58605234	253597.4	2607593.4
A21	23.55958494	84.58686987	253680.0	2607542.0
A22	23.55992600	84.58732390	253727.0	2607579.0
A23	23.56116923	84.58774187	253772.0	2607716.0
A24	23.562058	84.587412	253740.0	2607815.0
A25	23.562952	84.587445	253745.0	2607914.0
A26	23.56405	84.587787	253782.0	2608035.0
A27	23.565116	84.587288	253733.0	2608154.0
A28	23.565872	84.585991	253602.0	2608240.0
A29	23.566418	84.584493	253450.0	2608303.0
A30	23.566519	84.583423	253341.0	2608316.0
A31	23.567346	84.583242	253324.0	2608408.0
A32	23.567731	84.584185	253421.0	2608449.0
A33	23.567708	84.585605	253566.0	2608444.0
A34	23.567363	84.587208	253729.0	2608403.0
A35	23.566947	84.588312	253841.0	2608355.0
A36	23.564473	84.589444	253952.0	2608079.0
A37	23.563631	84.588706	253875.0	2607987.0
A38	23.561955	84.589529	253956.0	2607800.0
A39	23.560316	84.590343	254036.0	2607617.0
A40	23.55773454	84.58922537	253917.1	2607333.0

				1		I	I
		A41	23.55619503	84.58876396	253867.1	2607163.2	
		A42	23.55595391	84.58801463	253790.1	2607137.8	
		A43	23.55628900	84.58760523	253748.9	2607175.6	
		A44	23.55665726	84.58564188	253549.1	2607219.8	
		A45	23.55721350	84.58483092	253467.4	2607282.8	
		A46	23.55732803	84.58411632	253394.6	2607296.7	
		A47	23.55790076	84.58365299	253307	2607373.0	
		A48	23.55824019	84.58285436	253216	2607458	
		A49	23.55875732	84.58234694	253164	2607496	
		A43	23.33673732	84.38234034	233104	2007490	
	Villages	Binduatoli,	Pakhar				
	Tehsil/Taluk	Kisko					
	District	Lohardaga	l				
	State	Jharkhand					
2.	Area (hectares/						
	sq. km)						
	Block Area	0.55 sq.km	(55.00 Ha)				
	Forest Area			occupies in pa	rt of block.	(Partly Forest	t & Partly non-
		forest)				. •	
	Government	Data not a	vailable				
	Land Area						
	(Bilanam)						
	Charagaha		Data not available				
	Private Land	Data not a	Data not available				
2	Area						
3.	Accessibility Nearest Rail	Lobordogo	Lohardaga Railway Station (30 Kms), Ranchi Railway Station (84 Kms.)				
	Head	Lonardaga Railway Station (30 Kms), Ranchi Railway Station (84 Kms.)					
	Road	The nation	al highway N	⊔ 20 paccac /	around 20	km oast of th	no block
	Nuau			H-39 passes a ds are availab			IE DIUUK.
	Airport			om the block.		ca.	
4.	Hydrography	Tanoni ai		CITI GIO DIOCK.			
- - -	Local Surface	Lohardaga	district is dra	ained by the tr	ibutaries o	f three maior	r river of the state
	Drainage Pattern						region in west of
	(Channels)						h Koel River. The
		•	•		•	•	n cutting of the
				s. A few natur	al springs	are noted in	the area.
	Rivers/ Streams	No major r	ver exists in the	ne area.			
5.	Climate	A. 16 75 -: -	nough make felt t	1107			
	Mean Annual Rainfall	Average annual rainfall is 1137 mm.					
	Temperatures	Minimum to	emneratures 1	°C (Nov-Jan)			
	(December)	iviii iii ii lulii l	mperatures 4	- 0 (110V-Jail)			
	(Minimum)	Maximum	emperatures	up to 42 ⁰ C (Ma	arch-June)		
	Temperatures			10 . 0 (1410	5 5 61.10)		
	(June)						
	(Maximum)						
6.	Topography						
	Toposheet	73 A/10					
	Number						

	Morphology of	Anvra Pat Plateau is tableland located over the Chota Nagpur plateau forming
	the Area	the watershed between the North and South Koel rivers. The Bauxite deposit
		under reference is characterized by the extensive blanket of plateau laterite on
		an almost flat topography, locally known as %Rat+. The flatness of the plateau
		together with well-defined steep scarp faces gives distinct feature to the
		topography of the deposits with gentle slope towards south-west. The range of elevation of the varies approximately between 980 and 1080 m from MSL in
		plateau region.
7.	Availability of	plateau region.
	baseline	
	geoscience data	
	Geological Map	Regional geological map sourced from Bhukosh (1:50K) available.
	(1:50K/25K)	
	Geochemical	Not applicable.
	Map	NIa(angliagh)
	Geophysical Map	Not applicable.
	(Aeromagnetic, ground	
	geophysical,	
	Regional as well	
	as local scale GP	
	maps)	
8.	Justification for	1. The proposed Anvra Pat (G3) block area lies in the Bauxite bearing
	taking up Preliminary	plateaus of Chhattisgarh-Jharkhand belt forming a part of the Pre- Cambrian shield of the Indian Peninsula. They consist mainly of
	Exploration	Chhotanagpur Granite Gneiss.
	Exploration	Official agpui Granite Officias.
		2. Preliminary geological work has been carried out by GSI as well as DMG,
		Jharkhand in the area. MECL & CMPDI has also carried out exploration
		(G3/G2) in around the adjoining areas which has established occurrence
		of Bauxite with thickness varying from 4 to 10 m
		, ,
		3. The MECL team visited the Anvra Pat bock and nearby mine areas. The
		pits in the existing mines have bauxite occurrences up to 25m depth. The
		outcrops of Bauxite are observed in the field and the exposed pits in the
		proposed block have confirmation of the Laterite / Bauxite profile in the
		Anvra Pat block.
		A Pauvita complex were collected from the black chawing encouraging
		4. Bauxite samples were collected from the block showing encouraging
		results of high Alumina (Al ₂ O ₃) and Titanium (TiO ₂) with low Silica (SiO ₂)
		in the range of 48-55%, 8-13% and 1-2%. respectively.
		5. Considering similar geological setup with known deposits, available
		literature and previous workers recommendations, the area hold potential
		to explore in detail with holistic exploration approach. Hence, preliminary
		exploration at G3 stage in the proposed area to be taken up to ascertain
		the exact potentiality of the prospect for Laterite/Bauxite.
		6. Existing running Pakhar Bauxite Mine by M/s Hindalco Industries Ltd lying in
		the south of the proposed block.
		and doubt of the proposed blook.
		7. After discussion with State Government, MECL decided to take up the
		exploration work of Bauxite Titanium & Associated minerals in the Anvra
		2 Aprotation work of Educate Thatham a Accordated Hillerials in the Alivia

pat Block, District . Lohardaga, Jharkhand through NMET funding. The positive outcome of the present exploration would be helpful and facilitate the Govt, for auctioning of the block.	
the Govt. for auctioning of the block.	

PROPOSAL FOR G3 LEVEL EXPLORATION FOR BAUXITE, TITANIUM & ASSOCIATED MINERALS IN THE ANVRA PAT PLATEAU DISTRICT - LOHARDAGA, JHARKHAND

1.0.0 Introduction

- 1.1.1 The importance of Bauxite is well known in the production of Alumina (Al₂O₃) and also in other industries viz. abrasives, refractory, chemical and cement. The properties like lightness of metal aluminium, its high resistance to atmospheric corrosion and good electrical conductivity make it a popular metal and is being used for making household utensils and therefore known as poor mance goldq The aluminium metal being a good substitute for non-ferrous metals like copper, zinc which are scarce and costly metals has further necessitated development of aluminium industry throughout the world.
- 1.1.2 Reserves/Resources of Bauxite in the country as on 1.4.2015, as per NMI database, based on UNFC system have been placed at 3,896 million tonnes. These resources include 656 million tonnes Reserves and 3,240 million tonnes Remaining Resources. By grades, about 77% resources are of Metallurgical grade. The resources of Refractory and Chemical grades are limited and together account for about 4%. By States, Odisha alone accounts for 51% of country's resources of Bauxite followed by Andhra Pradesh (16%), Gujarat (9%), Jharkhand (6%), Maharashtra (5%) and MadhyaPradesh & Chhattisgarh (4% each).
- 1.1.3 On enactment of MMDR Amendment Act-2015, Minerals (Evidence of Mineral Contents) Rule-2015 and Mineral Auction Rule-2015, Govt. of India directed State Governments to speed up exploration work for different Mineral Commodities in the respective states for auctioning of the blocks.
- 1.1.4 MECL requested DMG, Govt. of Jharkhand for providing consent required for preparation of exploration proposal pertaining to Anvra Pat Block, Distt. Lohardaga, Jharkhand vide letter No.: MECL/EXPL/File/DMG JH./2023-24/241 Dated: 06.06.2024.
- 1.1.5 The exploration in the block is to be carried out in G-3 stage. Boreholes will be drilled at 250m x 250m grid interval so that the resources can be estimated at G-3 level. Then the block can be ready for auctioning by Government of Jharkhand.

2.0.0 Location and Communication

2.1.0 The Anvra Pat block falls in Survey of India Topo-sheet No.73 A/10 and is bounded by the following Co-ordinates under Anvra Pat plateau which is located in Lohardaga district of Jharkhand.

Table: 2.1
Anvrapat proposed Block Boundary Coordinates

	T	gree Decimal)		one-45Q)
Cordinal Point	Latitude	Longitude	Easting	Northing
A1	23.55960668	84.58121399	253102.5	2607554.1
A2	23.56053809	84.58256320	253242.0	2607655.0
A3	23.56242716	84.58293864	253283.9	2607863.6
A4	23.56340619	84.58355855	253349.0	2607971.0
A5	23.56394494	84.58396910	253391.9	2608030.0
A6	23.56495091	84.58433493	253431.2	2608140.8
A7	23.56516186	84.58552162	253552.7	2608162.1
A8	23.56450236	84.58671145	253673.0	2608087.0
A9	23.56360326	84.58560028	253557.9	2607989.3
A10	23.56223400	84.58422633	253479.0	2607857.0
A11	23.56162130	84.58401971	253411	2607766
A12	23.56043077	84.58378927	253385.0	2607645.0
A13	23.56006602	84.58297335	253283.0	2607602.0
A14	23.55954292	84.58294101	253278.7	2607544.1
A15	23.55905501	84.58413760	253400.0	2607488.0
A16	23.55906655	84.58508158	253496.4	2607487.7
A17	23.55955369	84.58519834	253509.3	2607541.4
A18	23.55939879	84.58564708	253554.8	2607523.5
A19	23.56072226	84.58524394	253495	2607707
A20	23.56003643	84.58605234	253597.4	2607593.4
A21	23.55958494	84.58686987	253680.0	2607542.0
A22	23.55992600	84.58732390	253727.0	2607579.0
A23	23.56116923	84.58774187	253772.0	2607716.0
A24	23.562058	84.587412	253740.0	2607815.0
A25	23.562952	84.587445	253745.0	2607914.0
A26	23.56405	84.587787	253782.0	2608035.0
A27	23.565116	84.587288	253733.0	2608154.0
A28	23.565872	84.585991	253602.0	2608240.0
A29	23.566418	84.584493	253450.0	2608303.0
A30	23.566519	84.583423	253341.0	2608316.0
A31	23.567346	84.583242	253324.0	2608408.0
A32	23.567731	84.584185	253421.0	2608449.0
A33	23.567708	84.585605	253566.0	2608444.0
A34	23.567363	84.587208	253729.0	2608403.0
A35	23.566947	84.588312	253841.0	2608355.0
A36	23.564473	84.589444	253952.0	2608079.0
A37	23.563631	84.588706	253875.0	2607987.0
A38	23.561955	84.589529	253956.0	2607800.0
A39	23.560316	84.590343	254036.0	2607617.0
A40	23.55773454	84.58922537	253917.1	2607333.0
A41	23.55619503	84.58876396	253867.1	2607163.2

A42	23.55595391	84.58801463	253790.1	2607137.8
A43	23.55628900	84.58760523	253748.9	2607175.6
A44	23.55665726	84.58564188	253549.1	2607219.8
A45	23.55721350	84.58483092	253467.4	2607282.8
A46	23.55732803	84.58411632	253394.6	2607296.7
A47	23.55790076	84.58365299	253307	2607373.0
A48	23.55824019	84.58285436	253216	2607458
A49	23.55875732	84.58234694	253164	2607496

The Anvra Pat plateau is located at a distance of 15 kms from Kisko block office. Kisko is connected to Lohardaga district HQ with metal road of about 10 kms. The distance from Lohardaga town to Ranchi the state capital is 55 km, connected by an all-weather metalled road. Thus, Anvra Pat plateau is located at a distance of about 84 km from Ranchi. The nearest railway station is Lohardaga, located at a distance of 30 km from the plateau.

2.2.0 Physiography & Drainage

- 2.2.1 Anvra Pat Plateau is tableland located in Chota Nagpur plateau forming the watershed between the North and South Koel rivers. The Bauxite deposit under reference is characterized by the extensive blanket of plateau laterite on an almost flat topography, locally known as %Rat+. The flatness of the plateau together with well-defined steep scarp faces gives distinct feature to the topography of the deposits with gentle slope towards south-west.
- 2.2.2 The Lohardaga district covers the south-western part of Chota Nagpur plateau. The range of elevation of the district varies approximately between 980 to 1080m from MSL in plateau region. The topography of the district is undulating and rugged. Lohardaga district is drained by the tributaries of three major river of the state viz. North Koel, South Koel and Damodar. The plateau region in west of Lohardaga town is the major water divide for north and south Koel River. The plateau region of the district is highly dissected by down cutting of the tributaries of these rivers.

2.3.0 Climate & Rainfall

2.3.1 Climate

The district experience warm humid climate with three well defined seasons i.e. Summer, Winter and Monsoon. The winters commence from middle November and extend up to middle of March. December is the coldest month. During winter the temperature goes down to 4°C. Summer starts from middle of March and continues up to middle of June, when the temperature shoots up to 42°C.

2.3.2 Rainfall

The monsoon sets in by the middle of June and continues till the middle of October. The annual normal rainfall in the district is 1137 mm. 83.5% of total rainfall occurs during the monsoon months only.

3.0.0 Previous Work

3.1.0 The first account of the Bauxite and the aluminous laterite of India were given by Sir C.S. Fox in 1923 (Mem. Geol. Survey of India, XLIX,1923). The discovery of a large number of Bauxite deposits in erstwhile Bihar, now Jharkhand came to light in 1943-47 as a result of the field work carried out by Dr. M.K. Roy Chowdhury of G.S.I. Subsequently, Dr. Roy Chowdhury (1958, 1965) presented a detailed account of the geology and the economic aspect of the individual deposits of Bauxite of Jharkhand and M.P. The results of his work are well documented in the Memoirs of the Geological Survey of India, Volume-85, published in 1958.

Bauxite deposits of the area around Lohardaga, Jharkhand erstwhile Bihar, were investigated during the field-season 1961-62 by N. Majumdar of GSI and report titled Report on the Bauxite Deposits near Lohardaga Area Ranchi District, Bihar+ was published in 1963.

Existing running Pakhar Bauxite Mine by M/s Hindalco Industries Ltd lying in the south of the proposed block.

4.0.0 Regional Geology

- 4.1.0 The Bauxite bearing plateaus of Chhattisgarh and Jharkhand belt form a part of the pre-cambrian shield of the Indian peninsula. They consist mainly of Chhotanagpur Granite Gneiss. Inclusions of quartzite and older basic rocks belonging to the Older Metamorphic Group occasionally occur in the area. The western part of the Ranchi upland is occupied by a raised tract which is senso stricto form dissected plateau (locally called %pat+) varying in heights from 980 to 1080m above mean sea level (M.S. L). These dissected plateaus are invariably capped with Laterite and Bauxite.
- 4.1.1 The Gondwana coalfields of the Damodar and Auranga basins lie to the north of the Ranchi upland. The pre-cambrian rocks of Singhbhum lie in the south; the Purulia sub-plains in the east and the Bauxite bearing plateaus are located in the western part of Ranchi plateau. The laterite profiles on the patqare underlain by clayey and ferruginous sediments of Upper Gondwana Age (?). The regional succession of the area after Roy Chowdhury (1958) is as given in table below.

Table 4.1

Age		Formation
Recent		Alluvium, conglomerate and carbonaceous shale
Tertiary to Rec	ent	Laterite, Bauxite and lithomarge
	Deccan Trap Infra	Basaltic lavas
Upper	Trappean (Lameta)	Calcified ósilicified rocks
Cretaceous		Grit
		Impure limestone
Cuddapah or earlier (?)		Newer dolerites

	Chhotanagpur Granite Gneiss		Vein rocks, pegmatite or graphic granite, aplite, quartz veins and quartz / tourmaline rocks (?) Pseudo-diorite, granites and gneisses (?) Diorite		
			(?) Ultra-basic igneous rocks		
	D				
ARCHAEAN	Н				
	A	Iron Ore Series	Phyllite, mica-schist, quartzite, lime-silicate rocks and		
	R	or Older	basic rocks		
	W	Metamorphics			
	A				
	R				

4.2.0 Block Geology

The Anvra Pat plateau is a part of great tableland of Chhotanagpur Granite Gneiss. The Bauxite /laterite profile could be seen along the ghat section leading to the hill top of Anvra Pat Plateau. The reported major basal rocks of the area are metamorphic comprising quartzite, phyllite, mica-schist etc. Presence of traps and /or Upper Gondwana sediments at the base of laterite profile may be thin and patchy.

4.2.1 Occurrence of Bauxite in the Area

The occurrence of Bauxite in the lateritic sequence are mainly boulder/pocket type, consists of Bauxite cobbles, boulders and pebbles with interbinding material of ferruginous laterite, morrum and clays. Closed spaced Bauxite boulders are also seen spreading over a short distance. Lensoidal, pinch & swell types of structures are observed in the cross section nearby Serendag west block, Lohardaga district and as such there is no significant pattern found in occurrence of Bauxite boulder within the zone of bauxitization. Narrow and impersistent bands and patches of non-ore intervene the Bauxite zone. Hence, occurrence of Bauxite in the area is erratic in nature. Anvra plateau is the south extension of Pakhar Pat. In old abandoned pits 2m. 4m of Bauxite has been observed.

4.2.1 The general geologic sequence of the Lohardaga after Roy (1973) is given below in the table: -

Table 4.2

Age	Formation
Recent	Soil and/or alluvium
Late Tertiary	Upper (Ferruginous) laterite Bauxite
Upper Gondwana (?)	Sedimentary clay and clayey sandstone with intercalated
(Mahadeva Series)	bands of ferruginous sandstone, shale and mudstone.
	Unconformity
Pre-Cambrian	Chhotanagpur Granite Gneiss
	Older Metamorphics including mafic rock.

5.0.0 Proposed Exploration Programme

5.1.0 **Objectives**

Preliminary exploration (G3) of Bauxite, Titanium and Associated Minerals in the Anvra Pat block is to be carried out:

- 1. Preparation of Geological map and topographical survey at 1:2,000 Scale.
- 2. To check the Bauxite occurrence up to the vertical depth of 30m below ground level.
- 3. Two boreholes will be drilled up to the basement or 50m depth (whichever is earlier).
- 4. To assess the quality and the thickness of Bauxite horizons to estimate the Bauxite resources at G-3 (333) level in the block both quantitatively and qualitatively.
- 5. Along with Bauxite, resources of Titanium and Associated Minerals will be also reported if encouraging values are encountered.
- To carry out exploration as per Minerals (Evidence of Mineral Contents) Rules, 2015, Mineral Auction Rule. 2015 and MMDR Act. 2015 as to facilitate the Department of Mines & Geology (DMG), Government of Jharkhand for auctioning of the Bauxite block.

5.2.0 Exploration Scheme

5.2.1 **Topographic Survey:**

The area under investigation i.e. Bauxite plateau around Anvra Pat Plateau measuring about 0.55 Sq. Km. will be surveyed with triangulation network. The length of the block in the longer axis is 1.32 km and the maximum width of block is 0.94 km. The block will be tied up with survey network by triangulation station. Contouring is to be carried out at 2m interval. Reduced level of the boreholes and survey stations are to be determined with reference to the Survey of India Bench Mark as available at the plateau top. All the boreholes, important surface features, survey stations & Pits are to be marked and tied with the survey network. The block boundary and the borehole points will be surveyed by DGPS & Total Station in WGS-84 datum.

5.2.2 **Detailed Geological Mapping:**

The total study area of 0.55 Sq. km. will be mapped on 1:2000 scale with the exposures of laterite, Bauxite etc. as available at the top of the plateau along with the structural details marked on a plan before going for activities like drilling, sampling, pitting etc. A geological plan with topographical contours, borehole points, pits, surface features etc. on 1:2000 scales is to be prepared and finalized before finally leaving the worksite after completion of all exploratory activities.

5.2.3 **Drilling:**

Twelve (12) vertical boreholes (coring) at 200m x 200m grid are proposed for G3 stage of exploration. The shape of the proposed Anvra Pat block is erratic & irregular. In order to establish the continuity of ore body, taking into account the boulder/pocket nature of deposit, boreholes have been proposed to have better control on resource estimation. The boreholes will be drilled by core drilling methods up to lithomarge to estimate G3 level Bauxite resources. As the floor of the Bauxite zone is not known and targeting minimum 5m intersection of lithomarge in order to check the possibility

of REE concentration, the average depth of the boreholes is considered to be 30 m. Out of 12 boreholes, 02 boreholes is proposed to be drilled up to 50m or basement (whichever is earlier). Total 400.00 m of drilling is involved in the proposed G3 stage of exploration. The details of proposed boreholes are given the table no 5.1.

TABLE NO. 5.1					
DET	DETAILS OF PROPOSED BOREHOLE (CORE				
	DRILLING)	ND ATION			
	G-3 LEVEL OF EXPLO	,			
SL NO	Proposed Borehole	Proposed Depth To			
OL NO	no.	be Drilled (m)			
1	P-1	50.00			
2	P-2	30.00			
3	P-3	30.00			
4	P-4	30.00			
5	P-5	30.00			
6	P-6	30.00			
7	P-7	30.00			
8	P-8	30.00			
9	P-9	30.00			
10 P-10 30.0		30.00			
11	P-11	30.00			
12	P-12	50.00			
	TOTAL 400.00				
Grand Total 12 Boreholes: 400 m *					

Note: *The location and depth of the proposed boreholes is tentative and may subject to change as per actual geological and field conditions.

5.2.4 **Geological Core Logging:**

Geological core logging will be carried out carefully by recording minute details and lithological characters of the rock formations including colour, texture, mineralogical composition, structural details, lithological variations along with visual estimate in respect of Al₂O₃ content encountered in the boreholes. At this stage, the overburden, the roof and floor of the Laterite/Bauxite zones are to be marked as the deposit is of high alumina and low silica Bauxite type.

5.2.5 **Core Sampling:**

Borehole cuttings, the material which will be obtained by dry drilling, will be dried in sunlight and sampled for a uniform length of 1.00m so that each sample falls between fixed reduced levels in all the boreholes. But the top and the bottom samples will usually be less than 1.00m length as the R.L of the collar of the borehole and the floor of Bauxite zone will be in fraction of whole number. Later, keeping in view the boulder/ pocket nature of the deposit, the sampling will be carried out according to lithological changes. In Bauxite zone, the sample length will be reduced from 1m to 0.50m if required, while in the transition zone / Laterite and clay zone the length of sample may increase. Each sample thus obtained, will be crushed to (-) 60 mesh size and its quantity will be further reduced to 500 grams by coning and quartering. The material will be further crushed to (-) 120 mesh size. Two

representative samples weighing about 100 grams each will be taken from this, one of which will be sent for primary analysis for five radicals, i.e., Al_2O_3 , SiO_2 , Fe_2O_3 , TiO_2 & LOI and others samples needs to be kept for the purpose of check analysis. The remaining 300 grams sample will be kept for preparation of composite samples for analysis of spectroscopic, XRD, total available alumina and reactive silica, other elements and REE, etc.

5.2.6 Check Samples:

10% of the total primary samples shall be analysed from other NABL accredited laboratory as external checks to test the reliability of sampling and analytical data.

5.2.7 Analysis for Reactive Silica and "Total Available Alumina" Content:

24 Nors of composite samples will be analysed for ‰otal available alumina+ and Reactive Silica content. The samples should be selected in such a manner that the entire Bauxite bearing areas are represented by them.

5.2.8 Pitting for Bulk Density:

Bulk density will be determined in field by putting 1m X 1m X 1m pit. Three pits will be taken up for determination of bulk density.

5.2.9 Spectroscopic Studies:

The drill core samples need to be studied for 34 elements distribution by Emission Spectroscope. Semi-quantitative analysis for sample package i.e. 16 other elements viz. Li, Ga, In, Be, Ge, Mo, Cr, Ta, W, Ba, Co, Rb, Sr, Zr, Nb, Ni;18 REE viz. La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc, Y; 02 Actinides viz. U, Th, needs to be carried out by mass spectroscopic studies ICP-AES/ICP-MS (sequential technique).

5.2.10 Mineragraphic and Petrographic Studies:

To know about the mineralogical composition and interrelation among the constituent minerals 12 rock specimens from the area will be taken up for Petrographic studies. 12 nos. of ore specimens from the Bauxite zones will also be studied in polished section to know about the constituent ore minerals, their mode of occurrence, textures and other mineragraphic characteristics of Bauxite.

5.2.11 X-Ray Diffraction Studies:

A total of 12 Nos Bauxite samples representing the Anvra Pat deposit will be subjected to X-Ray Diffraction studies to know about the general distribution pattern of the constituent minerals of the ore. The samples should be selected from the borehole composite samples in a pattern to represent the Bauxite ore of the Anvra Pat deposit.

5.2.12 Quantum of Work:

The proposed quantum of exploratory work (G3) in the Anvra Pat block is furnished in Table-5.2.

S. No	Table 5.2: Proposed Quantum of Work, G3 stage Exploration in A	Unit	Quantum
1	Topographic Survey (Contour interval 2m) & Geological Mapping (1:2000 scale)	Sq. Km.	0.55
2	Bore Hole Fixation and determination of co-ordinates & Reduced Level (RL) of the boreholes and demarcation of lease hold boundary points by DGPS	Nos.	61
3	Core drilling (200m x 200 grid) 12 boreholes. Out of 12 BHs,10 BHs of 30 m depth to be drilled up to lithomarge and 02 borehole are proposed to be drilled up to 50m or basement (whichever is earlier)	m	400
4	Pitting for determination of Bulk density (1mX1mX1m) . 3Nos.	C .um	3
5	Sampling & Chemical Analysis		
	Primary samples to be analysed for 5 radicals		
	viz. Al ₂ O ₃ , SiO ₂ , Fe ₂ O ₃ , TiO ₂ & LOI		
a)	Borehole Core samples	Nos.	360
b)	Check samples (10% external)	Nos.	36
6	Total available alumina and Reactive Silica content	Nos.	24
7	Physical Studies		
a)	ICP-AES/ICPMS (sequential technique) for 34 elements i.e. 16 other elements viz. Li, Ga, In, Be, Ge, Mo, Ni, Cr, Ta, W, Ba, Co, Rb, Sr, Zr, Nb; 18 REE viz. La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc, Y; 02 Actinides viz. U, Th.	Nos.	60
b)	XRD studies	Nos.	12
8	Petrographic Studies	Nos.	12
9	Mineragraphic Studies	Nos.	12
10	Thin section study	Nos.	12
11	Preparation of Polished Thin Section	Nos.	12
12	In-situ Bulk Density	Nos.	3
13	Geological Report Preparation (As per Mineral (Evidence of mineral contents) Rule-2015)	Nos.	1

6.0.0 Time Schedule and Cost Estimates

6.1.0 Time Schedule:

The field work will take 06 months for completion due to dry drilling and other field problems. The laboratory studies will take additional 02 months from the date of completion of field work. Preparation of Geological Report will take 03 months with one month overlapping period with laboratory studies. Thus, the total duration of the project will be of 08 months.

TIME SCHEDULE/ACTION PLAN FOR PRILIMINARY EXPLORATION (G-3) FOR BAUXITE, TITANIUM & ASSOCIATED MINERALS IN ANVRA PAT BLOCK, DISTRICT- LOHARDAGA, JHARKHAND.											
SI.	Activities	Unit			MO	NTH	IS				
No.	Activities	Offic	1	2	3		4	5	6	7	8
1	Camp Setting	Nos.									
2	Geologist Party days in Field (1 Party)	day				R					
3	Survey Party days (1 Party)	day				E V					
4	Core Drilling (2 rig)	m.				E W					
5	Sampling Party days, Core Sampling	day				VV					
6	Camp Winding	Nos.									
7	Laboratory Studies	Nos.									
8	Geologist Party days in HQ (1 Party)	day									
9	Report Writing & Peer review	day									
NOTE:											
1	Commencement of project may be reckoned from the day the exploration acreage is available along with all statutory clearances.										
2	Time loss on account o law & order problem/										cal

6.2.0 Cost Estimates:

Tentative cost has been estimated based on Schedule of Charges (SoC) of projects funded by National Exploration Trust (NMET).

The total cost estimate of **Rs. 153.46 Lakhs** is being proposed for completion of exploratory work up to G3 level. Activity wise break-ups of the same are furnished below:

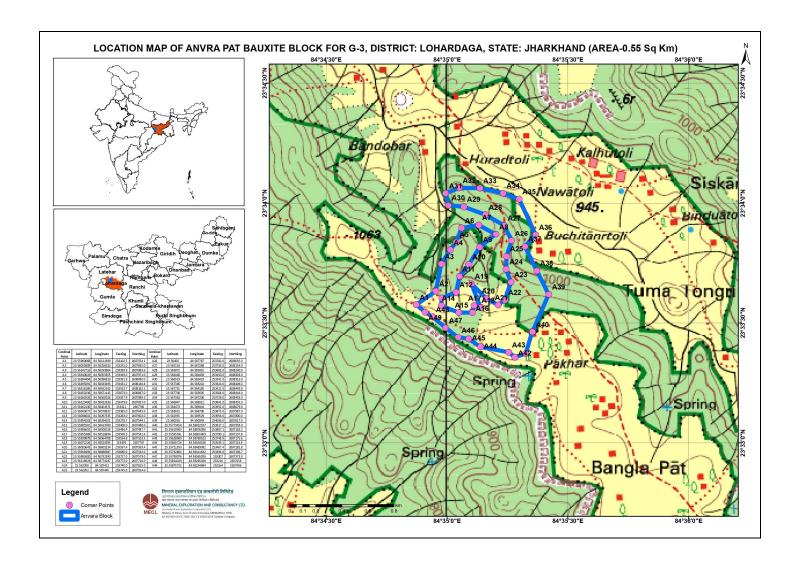
Table: 6.2

	Summary of Activity wise Cost Estimates						
Sl. No.	Activities	Estimated Cost (Rs.) - G3 level					
1	Geological work	41,05,080					
2	Mineral Investigation (Drilling & Pitting-Trenching)	54,24,400					
3	Laboratory studies (Chemical Analysis,Physical & Petrological Studies & Geotech. Lab)	25,96,440					
	Sub-Total	1,21,25,920					
4	Proposal Preparation	2,42,518					
5	Geological Report Preparation	6,06,296					
6	Peer review charges	30,000					
	Total	1,30,04,734					
7	GST (18%)	23,40,852					
Total Co	st including 18% GST	1,53,45,587					
SAY IN LAKHS 153.46							

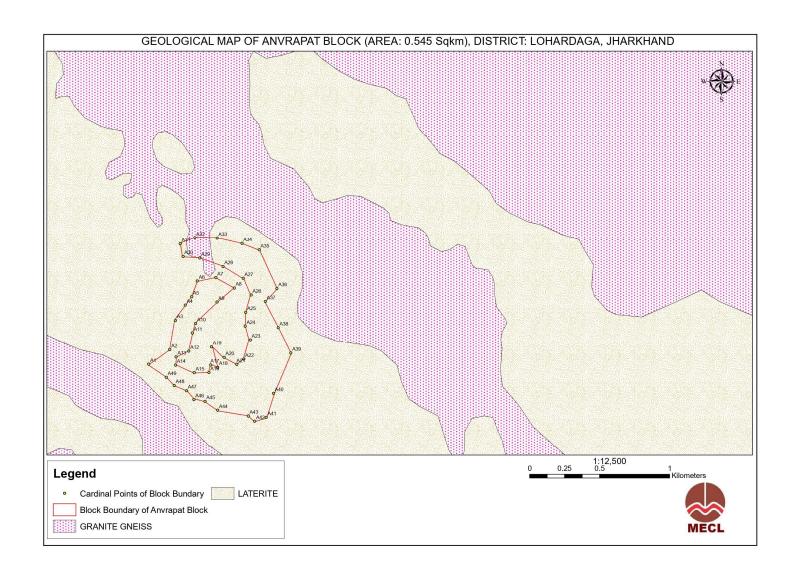
7.0.0 Justifications

7.1.0 Preliminary geological work has been carried out by GSI as well as DMG, Jharkhand in the area. MECL & CMPDI has also carried out exploration in around the adjoining area which has established occurrence of Bauxite with thickness varying from 4 to 6 m. The outcrops of Bauxite are observed in the field and the exposed pits in the proposed area have confirmation of the Laterite / Bauxite profile in the block. The above fact signifies that the plateau is potential Bauxite bearing and may have a good prospect to be explored to G3 level.

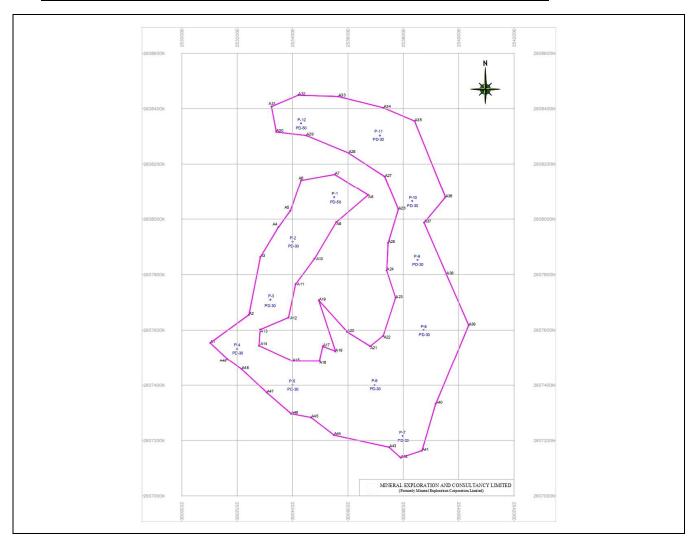
The MECL team visited the Anvra Pat block and nearby mine areas. The pits in the existing mines have bauxite occurrences upto 25m depth. The outcrops of Bauxite are observed in the field and the exposed pits in the proposed block have confirmation of the Laterite / Bauxite profile in the Anvra Pat block. Team collected Bauxite samples from the block showing encouraging results of high Alumina (Al2O3) and Titanium (TiO2) with low Silica (SiO2) in the range of 48-55%, 8-13% and 1-2%. respectively. Results are given below for the reference:


SL.NO.	SAMPLE ID	Al ₂ O ₃ %	SiO ₂ %	Fe ₂ O ₃ %	TiO ₂ %	LOI %
1	FS-01	50.12	1.45	11.14	9.00	27.80
2	FS-02	54.52	1.47	4.48	12.50	26.62
3	FS-03	50.57	2.22	9.27	9.82	27.79
4	FS-04	54.10	1.38	4.62	10.99	28.64
5	FS-05	47.58	1.62	10.63	7.73	32.12
6	FS-06	54.58	1.47	4.31	10.43	28.93

7.2.0 DMG, Government of Jharkhand discussed with MECL to take up exploration work of Bauxite blocks in the Lohardaga districts of Jharkhand for up gradation of the area as per the MMDR Amendment Act and Mineral Auction Rule, 2015 to enable the state government for auctioning of the Bauxite blocks. On discussion with Jharkhand Government, MECL decided to take up the exploration work of Bauxite for G3 level and accordingly prepared the proposal for G3 Level exploration in the Anvra Pat Block, District . Lohardaga, Jharkhand through NMET funding.


List of Plates:

- 1. Location Plan.
- 2. Regional Geological Map.
- 3. Proposed Borehole Location Plan


LOCATION MAP

REGIONAL GEOLOGICAL MAP

PROPOSED BOREHOLE LOCATION PLAN OF ANVRA PAT BLOCK

	ANVRA PAT BLOCK FOR G-3 (AREA-0.55 Sq Km)								
	PROPOSED BH POINTS								
SL.	PBH								
NO	NO.	EASTING (M)	NORTHING (M)	PROP DEPTH (M)					
1	P-1	253550.04	2608078.99	50					
2	P-2	253399.95	2607918.43	30					
3	P-3	253319.78	2607709.72	30					
4	P-4	253199.81	2607531.77	30					
5	P-5	253399.96	2607400.44	30					
6	P-6	253696.20	2607400.02	30					
7	P-7	253798.00	2607217.00	30					
8	P-8	253873.24	2607600.45	30					
9	P-9	253851.00	2607853.00	30					
10	P-10	253832.00	2608065.00	30					
11	P-11	253715.09	2608302.74	30					
12	P-12	253430.00	2608347.00	50					
	TO	400							

COST ESTIMATE FOR PRILIMINARY EXPLORATION (G-3) FOR BAUXITE, TITANIUM & ASSOCIATED MINERALS IN ANVRA PAT BLOCK DISTRICT- LOHARDAGA, STATE- JHARKHAND Total Area - 0.55 sq km; Nos. of Boreholes - 12; Completion Time - 08 Months; Review- After 04 Months

No.		I otai Area - 0	.55 sq km; N		12 ; Completion Time - (S
A	Sl.No.	Item of Work	Unit					Remarks
Comparison for membrane benefits of Strongton Comparison Compari	Δ	GEOLOGICAL WORK		Soc-Item -Si No.	Rates as per 50C	Qıy.	Total Amount (Ks)	
Representation Contract of the contract of								
Compact for excludings are and upon HTML Compact for excludings are and upon HTML Compact for excluding transport on plant of the state of the	1							
Second Content of the Content of t	-	• 0	dov	1.2	9.000	30	2 70 000	
Comparison of Charges for any Sampler per day (1 Party) October 1 1.5.7					,			
Post	- 0	Charges for Geologist party per day at field	uay	1.3	11,000	100	19,80,000	Amount will be reimbursed as per the notified
Charges for one Samples per day (I Pury)		1 party Labour (2 Nos each party)	day	5.7	522	360	1 97 020	-
Clarges for one Sampha per day (1 Party)			day	3.7	322	300	1,07,720	
Labour (A No.) per day 1.1979 per day 1.52 5.00 5.9 1.50.00 1.50.00 Amount will be reimbursed as per the notified in the per the notified in the per than self-led in the per the notified in the per than self-led in the per tha			one compler					respective state Govt. winelever is higher
Contest Cont	d	Charges for one Sampler per day (1 Party)		1.5.2	5,100	30	1,53,000	
Commission of the Commission			perday					Amount will be reimbursed as per the notified
Servey (ms 12000 Seale)		Labours (4 Nos)	day	5.7	522	120	62.640	
2	٠	Labours (4 Nos)	day	3.7	322	120	02,040	1 7
Topographical survey & nuffice centoming at 2m interval	2	Survey (on 1-2000 Scale)						respective state Govt. whichever is higher
Bottlerance								
Both Cloth Fixthis and determination of an excitation of the description of des	a		day	1.6.1a	8,300	30	2,49,000	
Section 1.6.2 19.200 61 1.71,200 12.8Hpoints 4.94 Boundary points 1.6.2 19.200 61 1.71,200 12.8Hpoints 4.94 Boundary points 1.6.2 19.200 61 1.71,200 12.8Hpoints 4.94 Boundary points 1.6.2 19.200 1.71,200								
Section Company Comp		Bore Hole Fixation and determination of co-ordinates	Per Point of					
2 2 2 2 2 2 2 2 2 2	b	* /		1.6.2	19,200	61	11,71,200	12 BH point & 49 Boundary points
Supervision (a. Non-each pany) day 5.7 5.22 60 31.320 rates by the Central Labour Commissioner or properties State Gent. whichever in higher respective State Gent. Whichever Gentlement of the state of the sta		demarcation of lease hold boundary points by DGPS	ooser varion					
Supervision (a. Non-each pany) day 5.7 5.22 60 31.320 rates by the Central Labour Commissioner or properties State Gent. whichever in higher respective State Gent. Whichever Gentlement of the state of the sta								Amount will be reimbursed as per the notified
SUB-TOTAL A 4185.888 SUB-TOTAL A SUB-TOT	c	2 party Labour (2 Nos each party)	day	5.7	522	60	31 320	
SUB-TOTAL A			,],	322		31,320	1 7
MINERAL INVESTIGATION		SUB-TOTAL A					41.05.080	i i i i i i i i i i i i i i i i i i i
Printing & Frenching Printing & Greatermination of bulk density (fmx l mx l m) Per cu. m 2.1.2 3800 3 11,400							.1,00,000	
Printing & Frenching Printing & Greatermination of bulk density (fmx l mx l m) Per cu. m 2.1.2 3800 3 11,400	В	MINERAL INVESTIGATION						
Principle of determination of bulk density (Imx Innx Inn) 3 nos.								
3 30.05 Per cu. m 2.1.2 S900 5 11,400								
Dept. Dept	a	,	per cu. m	2.1.2	3800	3	11,400	
Description	2							
Declaration		Ditte Di. (G						Out of 12 RHs 10 RHs of 30 m depth to be
Body Seek Dilling Que Description Desc								
Land / Crop Compensation (in case the BH falls in agricultural Land)	a	Dry Core Drilling up to 30-50 m (05 BHs, NQ size)	m	2.2.1.1b	7,168	400	28,67,200	
Land / Crop Compensation (in case the BH falls in griedural Land) per borehole 5.6 20,000 12 24,0000 12 24,0000 13 24,0000 13 24,0000 14 24,0000 14 24,0000 12 24,000								
December								
Second Machine Second Second Second Second Second	h	Land / Crop Compensation (in case the BH falls in	nor horobolo	5.6	20,000	12	2 40 000	
Construction of construction of Contract Pillar (12*x12*x30*7)	U	agricultural Land)	per borenoie	3.0	20,000	12	2,40,000	
Transportation of Drill Rig & Truck associated per drill Km 2.2.8 36 3,400 1,22,400 2 Rigs	_	Construction of concrete Dillor (12"x12"x20")	nor noint	2 2 70	2 000	61	1 22 000	
Monthly Accommodation Charges for drilling Camp Mos 2.2.9 S0,000 4 2,00,000	·	Construction of concrete 1 mai (12 x12 x30)	per point	2.2./a	2,000	01	1,22,000	12 BH points, 47 Boundary points.
Drilling Camp Setting Cost Nos 2.2.9a 2.50,000 2 5.00,000	d	Transportation of Drill Rig & Truck associated per drill	Km	2.2.8	36	3,400	1,22,400	2 Rigs
Drilling Camp Setting Cost Nos 2.2.9a 2.50,000 2 5.00,000	-	Monthly Accommodation Charges for drilling Camp	month	220	50,000	4	2.00.000	
Sprilling Camp Winding up Cost	f							
Road Making (Rugged/Hilly Terrain)	σ							1
No. Road Making (Rugged/Hilly Terrain) Per km 2.2.10b 32,200 7 2.25400 requirement and Road Making Charges will be reimbursed accordingly.	_ 5	Drining Camp winding up Cost	1103	2.2.70	2,50,000		3,00,000	Road Making will be considered as per the
Drill Core Preservation	h	Road Making (Rugged/Hilly Terrain)	ner km	2.2.10b	32 200	7	2 25 400	
i Drill Core Preservation per m 5.3 1,590 400 6,36,000 54,24,400 554,24,400 554,24,400 554,24,400 554,24,400 554,24,400 554,24,400 554,24,400 554,24,400 554,24,400 554,24,400 554,24,400 554,24,400 554,24,400 554,24,400 554,24,400 554,24,400 554,24,400 554,24,400 554,24,200 5554,24,	"	Road Waking (Rugged/IIII)	per kiii	2.2.100	32,200	,	2,23,400	1 0 0
SUB-TOTAL B	i	Drill Core Preservation	ner m	5.3	1 590	400	6 36 000	remibursed accordingry.
C LABORATORY STUDIES 1 Chemical Analysis 1) Primary samples Analysis for 5 radicals i.e. Al2O3, SiO2, Fe2O3, TiO2 A & LOI 1) Check samples External (10%) Analysis for 5 radicals i.e. Al2O3, SiO2, Fe2O3, TiO2 A Analysis for 5 radicals i.e. Al2O3, SiO2, Fe2O3, TiO2 A Analysis for 5 radicals i.e. Al2O3, SiO2, Fe2O3, TiO2 A Analysis for 6 radicals i.e. Al2O3, SiO2, Fe2O3, TiO2 A Analysis for 7 radicals, viz. Al ₂ O ₃ , SiO ₂ , Fe ₂ O ₃ , TiO ₂ A Analysis for 1 radicals, viz. Al ₂ O ₃ , SiO ₂ , Fe ₂ O ₃ , TiO ₃ A Analysis for 14 radicals, viz. Al ₂ O ₃ , SiO ₂ , Fe ₂ O ₃ , TiO ₃ B Analysis for 14 radicals, viz. Al ₂ O ₃ , SiO ₂ , Fe ₂ O ₃ , TiO ₃ Analysis for 14 radicals, viz. Al ₂ O ₃ , SiO ₃ , Fe ₂ O ₃ , TiO ₃ B Analysis for 14 radicals, viz. Al ₂ O ₃ , SiO ₃ , Fe ₂ O ₃ , TiO ₃ Combined carbon. Combined determination of Tri hydrate Alumina (THA-40°c) and Mono hydrate Amumina (MHA-240°c) & Nos. Alaysis for Bauxie Combined determination of Tri hydrate Alumina (THA-40°c) and Mono hydrate Amumina (MHA-240°c) & Nos. Alaysis for Bauxie D Physical & Petrological Studies D Phys	-		perm	5.5	1,000			
Chemical Analysis Primary samples Analysis for 5 radicals i.e. Al2O3, SiO2, Fe2O3, TiO2 Nos 4.1.15a 4.200 360 15,12,000 Check samples External (10%)		ocb Totalib					2 1,2 1,100	
Chemical Analysis Primary samples Analysis for 5 radicals i.e. Al2O3, SiO2, Fe2O3, TiO2 Nos 4.1.15a 4.200 360 15,12,000 Check samples External (10%)	С	LABORATORY STUDIES						
Primary samples	-	CI I I I I I						
Analysis for 5 radicals i.e. Al2O3, SiO2, Fe2O3, TiO2 A LOI Analysis for 5 radicals i.e. Al2O3, SiO2, Fe2O3, TiO2 Analysis for 5 radicals i.e. Al2O3, SiO2, Fe2O3, TiO2 Analysis for 5 radicals i.e. Al2O3, SiO2, Fe2O3, TiO2 Analysis for 7 radicals, viz. Al ₂ O ₃ , SiO ₂ , Fe ₂ O ₃ , TiO2 Analysis for 7 radicals, viz. Al ₂ O ₃ , SiO ₂ , Fe ₂ O ₃ , TiO2 Analysis for 7 radicals, viz. Al ₂ O ₃ , SiO ₂ , Fe ₂ O ₃ , TiO2 Analysis for 14 radicals, viz. Al ₂ O ₃ , SiO ₂ , Fe ₂ O ₃ , TiO2 b. V ₂ O ₃ , P ₂ O ₃ , LOI Analysis for Bauxite Combined determination of Tri hydrate Alumina (THA-40°c) & Reactive Silica Sub-Total -1 Physical & Petrological Studies i) Specific Gravity & Porosity determination Nos. 4.1.17a Nos. 4.5.1 Al.10b Nos. 4.5.1 Al.10b Al.11b Al.10b Al.11c Al.10c Al.11c Al.10c Al.11c A								
a & LOI Nos 4.1.15a 4,200 560 15,12,000 ii) Check samples External (10%) Analysis for 5 radicals i.e. Al2O3, SiO2, Fe2O3, TiO2 & Nos 4.1.15a 4,200 36 1,51,200 iii) Composite samples Analysis for 7 radicals, viz. Al ₂ O ₃ , SiO ₂ , Fe ₂ O ₃ , Nos. 4.1.15a 4,200 Analysis for 1 radicals, viz. Al ₂ O ₃ , SiO ₂ , Fe ₂ O ₃ , Nos. 4.1.15a 4,200 Analysis for 1 radicals, viz. Al ₂ O ₃ , SiO ₂ , Fe ₂ O ₃ , Nos. 4.1.15a 4,200 Analysis for 1 radicals, viz. Al ₂ O ₃ , SiO ₂ , Fe ₂ O ₃ , Nos. 4.1.15a 4,200 Analysis for 1 Radicals, viz. Al ₂ O ₃ , SiO ₂ , Fe ₂ O ₃ , Nos. 4.1.15a 4,200 Combined determination of Tri hydrate Alumina (THA-40°c) & Nos. 4.1.17a 6,700 24 1,60,800 Reactive Silica			3.5	4	. =		4	
ii) Check samples External (10%) a. Analysis for 5 radicals i.e. Al2O3, SiO2, Fe2O3, TiO2 & Nos & 4.1.15a & 4.200 & 36 & 1,51,200 iii) Composite samples a. Analysis for 7 radicals, viz. Al₂O₃, SiO₂, Fe₂O₃, TiO₂, V₂O₃, P₂O₃, LOI & Nos. & 4.1.15a & 4.200 &	a		Nos	4.1.15a	4,200	360	15,12,000	
a. Analysis for 5 radicals i.e. Al2O3, SiO2, Fe2O3, TiO2 & Nos & 4.1.15a & 4.200 & 36 & 1.51,200 & iii) Composite samples a. Analysis for 7 radicals, viz. Al ₂ O ₃ , SiO ₂ , Fe ₂ O ₃ , Nos. TiO ₂ , V ₂ O ₅ , P ₂ O ₅ & LOI	ii)							
a. & LÓI			3.7	4115		2 -		
iii) Composite samples a. Analysis for 7 radicals, viz. Al ₂ O ₃ , SiO ₂ , Fe ₂ O ₃ , TiO ₂ , V ₂ O ₅ , P ₂ O ₅ & LOI Analysis for 14 radicals, viz. Al ₂ O ₃ , SiO ₂ , Fe ₂ O ₃ , TiO ₂ , V ₂ O ₅ , P ₂ O ₅ & LOI b. V ₂ O ₅ , P ₂ O ₅ LOI, MnO, CaO, MgO, K ₂ O, Na ₂ O, SO ₃ & Nos. Organic carbon. iv) Analysis for Bauxite Combined determination of Tri hydrate Alumina (THA-40°c) & Nos. 4.1.17a 6,700 24 1,60,800 Reactive Silica Sub-Total-1 2 Physical & Petrological Studies i) Specific Gravity & Porosity determination Nos. 4.8.1 1,605 ii) XRD studies for identification of minerals (Random) ICP-AES/ICP-MS (sequential technique) sample package for 34 elements ic. 16 other elements viz. iii) Li,Ga,In,Be,Ge,Mo,Cr,Ta,W,Ba,Co,Rb,Sr,Zr,Nb,Ni 18 REE viz. La,Ce, Pr,Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu,Se,Y; O2 Actinides viz. UTh. iv) Preparation of thin section Nos. 4.1.15a 4,200 4.1.17a 4.1.17a 6,700 4.1.17a	a.		Nos	4.1.15a	4,200	36	1,51,200	
a. Analysis for 7 radicals, viz. Al ₂ O ₃ , SiO ₂ , Fe ₂ O ₃ , TiO ₂ , V ₂ O ₅ , P ₂ O ₃ & LOI Analysis for 14 radicals, viz. Al ₂ O ₃ , SiO ₂ , Fe ₂ O ₃ , TiO ₂ . b. V ₂ O ₅ , P ₂ O ₅ , LOI, MnO, CaO, MgO, K ₂ O, Na ₂ O, SO ₃ & Organic carbon. iv) Analysis for Bauxite Combined determination of Tri hydrate Alumina (THA-40°c) at Ad°c) and Mono hydrate Amumina (MHA-240°c) & Reactive Silica Sub-Total -1 Physical & Petrological Studies i) Specific Gravity & Porosity determination Nos. 4.8.1 I,605 ii) XRD studies for identification of minerals (Random) ICP-AES/ICP-MS (sequential technique) sample package for 34 elements i.e. 16 other elements viz. iii) Li,Ga,In,Be,Ge,Mo,Cr,Ta,W,Ba,Co,Rb,Sr,Zr,Nb,Ni 18 REE viz. La,Ce, Pr,Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu,Se,Y; O2 Actinides viz. U,Th. iv) Preparation of thin section Nos. 4.3.1 2,353 12 28,236	iii)							
a. TiO₂, V₂O₂, P₂O₂ & LOI Analysis for 14 radicals, viz. Al₂O₃, SiO₂, Fe₂O₃, TiO₂, b. V₂O₂, P₂O₃, LOI, MnO, CaO, MgO, K₂O, Na₂O, SO₃ & Nos. Organic carbon. iv) Analysis for Bauxite Combined determination of Tri hydrate Alumina (THA-40°c) and Mono hydrate Amumina (MHA-240°c) & Reactive Silica Sub-Total -1 Physical & Petrological Studies i) Specific Gravity & Porosity determination XRD studies for identification of minerals (Random) Nos. 4.8.1 1,605 ii) XRD studies for identification of minerals (Random) Nos. 4.5.1 4.6.70 4.7.731 60 4.63,860 4.63,860 iii) Li,Ga,In,Be,Ge,Mo,Cr,Ta,W,Ba,Co,Rb,Sr,Zr,Nb,Ni 18 EEr, Tm, Yb, Lu,Sc,Y, O₂ Actinides viz. U,Th. iv) Preparation of thin section Nos. 4.1.15a 4.1.15a 4.2.00 4.1.15a 4.2.00 4.1.15a 4.2.00 4.1.15a 4.2.00 4.1.15a 4.2.00 4.1.15a 4.2.00 4.2.00 4.2.10 4.2.00 4.2.10 4.2.00 4.2.10 4.2.00 4.2.11 4.000 4.2.11 4.000 4.2.11 4.000 4.2.11 4.000 4.2.11 4.000 4.2.11 4.000 4.2.11 4.000 4.2.11 4.000 4.2.22 4.000 4.2.235 4.2.236		•						
Analysis for 14 radicals, viz. Al ₂ O ₃ , SiO ₂ , Fe ₂ O ₃ , TiO ₂ , b. V ₂ O ₃ , P ₂ O ₅ , LOI, MnO, CaO, MgO, K ₂ O, Na ₂ O, SO ₃ & Organic carbon. iv) Analysis for Bauxite Combined determination of Tri hydrate Alumina (THA- a. 40°c) and Mono hydrate Amumina (MHA- 240°c) & Reactive Silica Sub-Total -1 Physical & Petrological Studies i) Specific Gravity & Porosity determination ICP-AES/ICP-MS (sequential technique) sample package for 34 elements i.e. 16 other elements viz. liB (Ag, In, Be, Ge, Mo, Cr, Ta, W, Ba, Co, Rb, Sr, Zr, Nb, Ni; 18 REE viz. La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu,Se, Y; O2 Actinides viz. U,Th. iv) Preparation of thin section Nos. 4.3.1 A.1.15a 4.200 A.1.15a 4.200 A.24 A.200 A.200 A.24 A.200 A.200 A.24 A.200 A.200 A.24 A.200 A.200 A.24 A.200	a.		Nos.	4.1.15a	4,200			
b. V ₂ O ₃ , P ₂ O ₃ , LOI, MnO, CaO, MgO, K ₂ O, Na ₂ O, SO ₃ & Nos. iv) Analysis for Bauxite Combined determination of Tri hydrate Alumina (THA- a. 40°c) and Mono hydrate Amumina (MHA- 240°c) & Nos. Reactive Silica Sub-Total -1 Physical & Petrological Studies i) Specific Gravity & Porosity determination ii) XRD studies for identification of minerals (Random) ICP-AES/ICP-MS (sequential technique) sample package for 34 elements i.e. 16 other elements viz. Li,Ga,In,Be,Ge,Mo,Cr,Ta,W,Ba,Co,Rb,Sr,Zr,Nb,Ni 18 REE viz. La,Ce, Pr,Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu,Sc,Y; O2 Actinides viz. U,Th. iv) Preparation of thin section Nos. 4.1.15a 4.1.15a 4.200 4.1.15a 4.200 4.1.17a 4.1.1								
Organic carbon. iv) Analysis for Bauxite Combined determination of Tri hydrate Alumina (THA-40°c) and Mono hydrate Amumina (MHA-240°c) & Nos. 4.1.17a 6,700 24 1,60,800 Reactive Silica Sub-Total -1 18,24,000 18,24,000 2 Physical & Petrological Studies 1 18,24,000 i) Specific Gravity & Porosity determination Nos. 4.8.1 1,605 ii) XRD studies for identification of minerals (Random) Nos. 4.5.1 4,000 12 48,000 ICP-AES/ICP-MS (sequential technique) sample package for 34 elements i.e. 16 other elements viz. 1 1,1,60,5 4.5.1 4.5.1 4,60,4 4,63,860 4.63,860	L.	2 2 2 2 2 2 2	Nag	A 1 15-	4 200			
iv) Analysis for Bauxite Combined determination of Tri hydrate Alumina (THA- a. 40°c) and Mono hydrate Amumina (MHA- 240°c) & Nos. 4.1.17a 6,700 24 1,60,800 Reactive Silica Sub-Total -1 Physical & Petrological Studies i) Specific Gravity & Porosity determination Nos. 4.8.1 1,605 ii) XRD studies for identification of minerals (Random) Nos. 4.5.1 4,000 12 48,000 ICP-AES/ICP-MS (sequential technique) sample package for 34 elements i.e. 16 other elements viz. Li,Ga,In,Be,Ge,Mo,Cr,Ta,W,Ba,Co,Rb,Sr,Zr,Nb,Ni; 18 REE viz. La,Ce, Pr,Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu,Sc,Y; 02 Actinides viz. U,Th. iv) Preparation of thin section Nos. 4.3.1 2,353 12 28,236	В.		inos.	4.1.13a	4,200			
Combined determination of Tri hydrate Alumina (THA-a 40°c) and Mono hydrate Amumina (MHA- 240°c) & Nos. 4.1.17a 6,700 24 1,60,800	:							
a. 40°c) and Mono hydrate Amumina (MHA- 240°c) & Nos. 4.1.17a 6,700 24 1,60,800 Reactive Silica	IV)							
Reactive Silica Sub-Total -1 18,24,000 2		•	Nos	1117-	6 700	2.4	1 60 000	
Sub-Total -1 18,24,000	a.	•	INOS.	4.1.1/a	0,/00	24	1,00,800	
Physical & Petrological Studies Nos. 4.8.1 1,605 ii) XRD studies for identification of minerals (Random) Nos. 4.5.1 4,000 12 48,000 ICP-AES/ICP-MS (sequential technique) sample package for 34 elements i.e. 16 other elements viz. 4.5.1 4.00 12 48,000 iii) Li,Ga,In,Be,Ge,Mo,Cr,Ta,W,Ba,Co,Rb,Sr,Zr,Nb,Ni 18 REE viz. La,Ce, Pr,Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu,Sc,Y; 02 Actinides viz. U,Th. Nos. 4.1.14 7,731 60 4,63,860 iv) Preparation of thin section Nos. 4.3.1 2,353 12 28,236	\vdash						10 24 000	
i) Specific Gravity & Porosity determination Nos. 4.8.1 1,605 ii) XRD studies for identification of minerals (Random) Nos. 4.5.1 4,000 12 48,000 ICP-AES/ICP-MS (sequential technique) sample package for 34 elements i.e. 16 other elements viz. Nos. 4.5.1 7,731 60 4,63,860 iii) Li,Ga,In,Be,Ge,Mo,Cr,Ta,W,Ba,Co,Rb,Sr,Zr,Nb,Ni ; 18 REE viz. La,Ce, Pr,Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu,Sc,Y; 02 Actinides viz. U,Th. Nos. 4.1.14 7,731 60 4,63,860 iv) Preparation of thin section Nos. 4.3.1 2,353 12 28,236	2						18,24,000	
ii) XRD studies for identification of minerals (Random) Nos. 4.5.1 4,000 12 48,000 ICP-AES/ICP-MS (sequential technique) sample package for 34 elements i.e. 16 other elements viz. 60 4,63,860 iii) Li,Ga,ln,Be,Ge,Mo,Cr,Ta,W,Ba,Co,Rb,Sr,Zr,Nb,Ni; l8 REE viz. La,Ce, Pr,Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu,Sc,Y; 02 Actinides viz. U,Th. 7,731 60 4,63,860 iv) Preparation of thin section Nos. 4.3.1 2,353 12 28,236			Nes	481	1 605			
ICP-AES/ICP-MS (sequential technique) sample package for 34 elements i.e. 16 other elements viz. Li,Ga,In,Be,Ge,Mo,Cr,Ta,W,Ba,Co,Rb,Sr,Zr,Nb,Ni; 18 REE viz. La,Ce, Pr,Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu,Sc,Y; 02 Actinides viz. U,Th. Nos. 4.3.1 2,353 12 28,236		· · · · · · · · · · · · · · · · · · ·				12	40 000	
package for 34 elements i.e. 16 other elements viz. Li,Ga,In,Be,Ge,Mo,Cr,Ta,W,Ba,Co,Rb,Sr,Zr,Nb,Ni ;18 REE viz. La,Ce, Pr,Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu,Sc,Y; 02 Actinides viz. U,Th. Nos. 4.1.14 7,731 60 4,63,860 4,63,860 4,63,860 1,731 1	11)	` ,	INUS.	4.3.1	4,000	12	48,000	
iii) Li,Ga,In,Be,Ge,Mo,Cr,Ta,W,Ba,Co,Rb,Sr,Zr,Nb,Ni; 18 REE viz. La,Ce, Pr,Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu,Sc,Y; 02 Actinides viz. U,Th. Nos. 4.1.14 7,731 60 4,63,860 iv) Preparation of thin section Nos. 4.3.1 2,353 12 28,236								
;18 REE viz. La,Ce, Pr,Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu,Sc,Y; 02 Actinides viz. U,Th. iv) Preparation of thin section Nos. 4.3.1 2,353 12 28,236		. •	3.7	4114	a ac.		4.03.000	
Er, Tm, Yb, Lu,Sc,Y; 02 Actinides viz. U,Th. iv) Preparation of thin section Nos. 4.3.1 2,353 12 28,236	111)		Nos.	4.1.14	7,731	60	4,63,860	
iv) Preparation of thin section Nos. 4.3.1 2,353 12 28,236								
	.			42:	2.5-5		20	
v) Study of thin section Nos. 4.3.4 4.232 12 50,784	_	•						
	v)	Study of thin section	Nos.	4.3.4	4,232	12	50,784	

Sl.No.	Item of Work	Unit	Rates as per NMET SoC 2020-21 Estin		Estimated	Cost of the Proposal	Domanila
S1.No.		Unit	SoC-Item -Sl No.	Rates as per SoC	Qty.	Total Amount (Rs)	Remarks
vi)	Complete Petrographic Studies	Nos.	4.3.4	4,232	12	50,784	
vii)	Preparation of polished section	Nos.	4.3.2	1,549	12	18,588	
viii)	Study of polished section	Nos.	4.3.4	4,232	12	50,784	
ix)	Complete Minerographic Studies	Nos.	4.3.4	4,232	12	50,784	
	Sub-Total -2					7,61,820	
3	Geotechnical Laboratory						
i.	In-situ Bulk Density Determination	No.	4.1.0	3,540	3	10,620	
	Sub Total- 3					10,620	
	SUB-TOTAL C					25,96,440	
D	Total - A to C				+	1,21,25,920	
E	MISCELLANEOUS CHARGES					1,21,23,720	
1	Preparation of Exploration Proposal (5 Hard copies with a soft copy)	5 Hard copies with a soft copy	5.1	2% of the approved project cost or Rs. 5.0 Lakhs whichever is lower		2,42,518	EA has to submit the Hard Copies and the soft copy of the final proposal along with Maps and plan as suggested by the TCC-NMET in its meeting while clearing the proposal
2	Geological Report Preparation		5.2	For the projects having cost more than ₹50 lakh but less than 150 lakh: A Minimum of ₹2.5 lakh or 5% of the work whichever is more.		6,06,296	EA has to submit the final Geological Report in Hard Copies (5 Nos) and the soft copy to NMET
3	Peer review Charges		As per EC decision			30,000	
	Total Estimated Cost without GST					1,30,04,734	
	Provision for GST (18%)						GST will be reimbursed as per actual and as per notified prescribed rate
	Total Estimated Cost with GST					1,53,45,587	
		Say in Lakhs (Rs.)			153.46	

Note - If any part of the project is outsourced, the amount will be reimbursed as per the Paragraph 3 of NMET SoC and Item no. 6 of NMET SoC. In case of execution of the project by NEA on its own, a Certificate regarding non-outsourcing of any component/ project is required.